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A new physical basis for the irreducible representations of the 
orthogonal group SO(5) in the quasi-spin formalism 

S SzpikowskitPll and W Berejj 
t Universita Degli Studi di Trento, Trento (Povo), Italy 
$ Institute of Physics, M Curie-Sklodowska University, Lublin, Poland 

Received 20 October 1990 

Abstract. New physical state vectors for the IRS of the group SO(5) are constructed in an 
analytical form. The state vectors are labelled by the quantum numbers of the isospin, its 
third component, by the number of particles and by a fourth properly defined quantum 
number. The previously constructed bases have been compared with the new construction 
from the same point of view. Two examples illustrate the new construction. 

1. Introduction 

The group of orthogonal transformations SO(5) in five-dimensional abstract space, 
locally isomorphic with the symplectic group Sp(4), has found many applications in 
physics and particularly in nuclear physics. Symmetric representations of the group 
SO(5) described the octupole vibrations of nuclei and it is also a symmetry of the 
interacting boson model in its vibrational limit (Arima and Iachello 1976). In the 
seniority scheme the group SO(5) has been applied to the classification of neutron- 
proton states (Helmers 1961) and to the diagonalisation of the pairing Hamiltonian 
(Flowers and Szpikowski 1964, Ichimura 1964, Hecht 1965, Parikh 1965). In the physical 
applications, the bases of the irreducible representations ( I R S )  of the group are needed 
for the construction of matrix elements of the important physical operators. For a 
given I R  labelled by two quantum numbers (see for example Szpikowski 1966) one 
needs four further quantum numbers to factorise the states within a given IR. The 
complete classification of the state vectors was provided by the reduction of the group 
SO(5) (Hecht 1965): 

( 1 )  
where the groups SU,(2) and SU,(2) are the quasi-spin groups separately for neutrons 
and protons. However, the four quasi-spin neutron and proton numbers are not good 
physical numbers. A more significant reduction is given by 

(2) 
where the group SUr(2) is the ordinary isospin group and U(1) is a particle-generator 
transformation group (Flowers and Szpikowski 1964). The reduction (2) provides three 
physical quantum numbers: the isospin T, its third component MT and the number 

SO(5) 3 SU,(2) x SU,(2) 

SO(5) 3 SUr(2) x U(l )  
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of particles N. The missing fourth quantum number represents the known crucial 
problem in spite of the fact that the fourth commuting operator had been constructed 
a long time ago (Flowers and Szpikowski 1965, Hecht 1967). 

For the simplest I R ~  the construction of the state vectors have been described in 
detail (Szpikowski 1966, Hecht 1967, Hemenger and Hecht 1970). The general basis 
construction for a given I R  is described by Ahmed and Sharp (1970). Another solution 
of the same problem has been found by Smirnov and Tolstoy (1973) and the analysis 
of the solution has been discussed by AliSauskas (1983,1984). The constructed state 
vectors are analytical, complete but not orthogonal ones. Recently, Hecht and Elliott 
(1985) have discussed the same problem within the coherent-state method; however 
their procedure leads to a non-analytical solution. 

In this paper we propose a new construction of the state vectors which provide the 
basis for a given I R  of the group SO(5). Construction of the state vectors is given in 
section 2 and in section 3 we prove that the basis so constructed is a complete one 
(even overcomplete). In that section we also give a rule for choosing the exact number 
of linearly independent basis vectors. Also in section 3 we have compared our new 
construction with the known constructed bases. The discussion of similarities and 
differences of the bases is given in section 4. Finally, in section 5 ,  we have discussed 
some applications of the constructed basis to physical problems, namely to the fourth 
commuting operator and to the problem of a pairing interaction. 

2. The construction of the basis for a given IR of the group SO(5) 

We adopt the following definition of the generators of SO(5) transformations in the 
quasi-spin space in terms of the creation a;,,,,,,, and annihilation a,,,,,,,, nucleon operators 
(we adopt m, = f  for a neutron) on the j level: 

1 A -  

At(M,) = 2 1 ( - l ) ’ -m(~m,fm, , l lMT)aJ,m,a~-mm; 
”, 

m 

The first two operators create (annihilate) the pair of nucleons coupled to a zero 
angular momentum; the next three T operators are the isospin operators and the last 
one, No,  is the number of particles operator modified by a factor 5 and a constant 
- ( j  +f). The quasi-spin operators, separately for neutrons and protons, read 

S: = A’( 1) 

Sf = A’( -1) S i  = A( -1) S”,f(N0- To). 

S i  = A( 1) s: = f( No+ To) 
(4) 

The weight operators are No and To. The maximum weight ( U , ,  w 2 )  can be expressed 
by the physical numbers seniority U and reduced isotopic spin t (Flowers and 
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Szpikowski 1964) 

( 5 )  
U 

01 = ( j + f )  -- w 2 =  t .  

The maximum weight in this work will be labelled by ( U ,  t )  where w = w l .  

2 

We begin the construction with the state vector I v t )  where 

I ~ t ) = l ( w t ) N = v ;  T =  MT=t) (6) 

which is a unique state, i.e. the fourth quantum number, p, takes on only a unique 
value in the state (6). It is a state of the non-paired particles only, with maximum 
value of the isospin third component. The state (6) is not explicitly constructed but it 
has specific properties under the generator transformations. For example 

A(Mr)IUt)= T+lut)=O. (7) 

The general state construction has been done in several steps as follows. 

state (6): 
(i)  The maximum number of neutron pairs each coupled to J = 0 is created in the 

A+(l)"-'Iut)=I(wt); N ' =  u + 2 ( w - t ) ;  T'=M;=w) .  (8) 

(ii) From the state (8) with N' and T'= w we generate the state of a given a priori 
N and T within a given I R  ( w ,  t )  by means ofthe operator (Szpikowski and GBidi 1980) 

TL+ J - M ,  T;+ J - u + l  ~ ( l )  
J - I  

U-T 

i j ( ~ ' i ~ )  = 1 
r = O  r ! ( 2 T +  r +  l ) !  (9) 

where ?I-(') is the tensor operator of a rank 1 in the isospin space. The operator 9"' 
has to be constructed from the generators (3 ) .  In the case under consideration we 
adopt the following form of ?I-") 

?I-!!! = ( - i ) / - p ~ + ( - i ) ~ ~ ( i ) / - p  (10) 
where p is, for the moment, a free index. The rank 1 has been chosen in such a way 
as to obtain a prescribed number of particles N, i.e. 

1 = ( W  - t )  -+( N - U )  + 2 p .  ( 1 1 )  

If we apply the operators (9), (10) to the state (8) and commute the annihilation 
operator A(1) to the right we get, up to a constant factor, 

w h e r e p = f ( N - v )  and K = t + p - 2 p .  

factor): 
(iii) It can be seen that the state vectors ( 1 2 )  transform to the form (up to a constant 

I( d ) N p  TMT) = P L r K  A+( -1)'A'( 1)" -p  I u t )  (13) 
where the operator 

(14) P L r K = ( 2 T + l )  T L + T - M T T r + + J - K  

is a projection operator for an isospin group (Lowdin 1964, Shapiro 1965). 
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Straightforward inspection shows that the states ('internal states') 

A + ( - I ) ~ A + (  I ) ~ - ~ I u ~ )  (15)  

are the eigenstates of the quasispin operators (4) (squares of quasispins and their third 
components) and the eigenvalues read 

S , = f ( w - t )  

s , = ; ( w + t )  

s: = p - p -;( w - t )  

so, = p -+ (U  - t ) .  

We can say, by (13) and (15), that the state vectors can be projected from 'internal 
states' (15) with the help of the projection operator (14). We can extract from the 
construction (13) the possible values of the parameter p for a given IR (0, t ) ,  namely 

max(0, p +  t - w )  p s min(p, t +  U ) .  (17) 

Hence, we have completed the construction of the general basis for a given IR of 
the group SO(5). In the next section we give the completeness proof. In fact, the basis 
is overcompleted and, hence, we also give a rule for obtaining an exact number of 
state vectors. 

3. The completeness proof 

Due to the special choice of the 'internal states' (15), the completeness proof can be 
done in a similar way as in Elliott's proof (1958) for the basis functions in the reduction 
SU(3) 2 SO(3). 

Suppose the state vectors (13) do not form a complete set. Hence, in a space of 
the I R  basis there exists a non-zero vector INTM,) orthogonal to vectors (13). Hence 

If the state vector (13) has one (or more) different values N # f i ;  T f f or M ,  # 
then (18) is necessarily fulfilled. Hence, let us take N = f i ;  T = f ;  M ,  = A?,, The 
action in (18) of the operator PLT,  to the left gives 

If K # A?, then (19) also holds. Hence, the vector lNTMr) is also orthogonal to the 
'internal states' (15). Let us then consider any polynomial G of the SO(5) generators 
in which we put the generators in the order (from left to right): T,; A'(0); A(0) and 
the rest of the generators in any order. The rest of the generators while acting on 
'internal states' give also 'internal states'. Then the action of the operators A'(0) and 
A(0) can be equivalently transformed to the action of T+ and T- operators according 
to formulae: 

A'(0){A' ( - l )PA'( l )p-PI~r)}  = 

I - -  

(NTM,(PT,,,A+(-~)~A+(~)~-~(v~) = 0. (18) 

( f i fK (A+( - l )PA ' (  l ) P - P \ v r )  = 0. (19) 
I..- 

1 
T+ A + ( - 1 ) + A + ( 1 ) p - p 1 

4 P +  1) 
P - P  
d2 

(20) 
A(O){A+( -1)'A"( I)'-'[ u t ) }  = - - T A + (  - l)'-'A+( ,)'-'I ut).  

Hence, the polynomial G while acting on the 'internal state' gives 

~ ~ + ( - i ) ~ ~ + ( i ) ~ - ~ I v t ) =  u ~ . ~ , ~ , ,  T : : T ? A + ( - I ) ~ ~ ' A + ( I ) P ' - ~ ~ '  I4 (21) 
p ' p ' m n  

where a are expansion coefficients. 
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Then we get 

(fiffiTlGA+(-l)’A+( 1 ) ” ’ l ~ ~ t )  

The right-hand side of (22) is zero from (19). Hence, the left-hand side of (22) is also 
zero. But the arbitrary polynomial G of generators ( 3 )  can generate any of the basis 
vectors for a given IR.  Hence, the vector INTMT), from the space of basis vectors of 
a given IR,  giving the scalar product with any of the vectors equal to zero must be 
itself a zero vector. In other words, such a vector does not exist and the basis (13) 
forms a complete set. 

Now we proceed to choose the linearly independent set of states (13) which form 
a complete, but not overcomplete, basis of a given I R  of the group SO(5). Let us 
consider only those vectors (13) which fulfil the rules: 

- - I  

(i)  for T S  t we take all of the states with allowed p given by (17); 
(ii) for a given T >  t we choose the states (13) only with p given by the relation 

IKIS T S m i n ( K + p ,  K + 2 t ) .  (23) 

: ( 2 ~ + 3 ) ( 2 t + l ) ( ~ + t + 2 ) ( w - t + 1 )  (24) 

If we calculate the number of states (13) bounded by (23) we get the number 

which is exactly the number of the basis states for a given irreducible representation. 
It can be also shown that the states for a given T 

T > m i n ( K + p ,  K + 2 t )  (25) 
are the linear combination of the states with the same T but with K‘ and p’ allowed 
by the relation 

T S  min(K’+p’,  K’+ 2t). (26) 
For example, if T fulfils ( 2 5 ) ,  say T >  K + p ,  then 

I(wt)NpTMT) = C C&l(wt)Np’TM,) .  
’’2 T- K ’  

The basis vectors of the complete (exactly) set are not, however, orthogonal. The 
calculated scalar product of two vectors which differ by the p number only reads 

(( 0 t 1 NP ’ TMT I ( 1 NP TMT) 
( T + K ’ ) ! ( T + K ) !  ( U +  t + l ) ! ( 2 t ) ! ( 2 ~ + 2 ) ! ( w  - t ) ! p ’ ! p !  
( T -  K ’ ) ! (  T- K ) !  ( w  + t - P ‘ ) ! ( w  + t - B ) !  = ( 2 T +  1)  J 

(2i+ 1)(22+ 1 ) (  T - K ’ +  r ) ! (  T - K  + r ) !  ( - 1 ) 2 l+’ ’+P  + T - 2  I --w - p  

r ! ( 2 ~ +  r +  1 ) ! ~ 2 ( f ( w  + t )  - 2, +(w - t ) ,  i)E2(t(o + t ) + l ,  i , f ( w  - t ) )  

( I  - p ’ +  t -f( T- w - p  + r ) ) !  ( I  - p  + t -f( T- w - p  + r ) ) !  
X ( I +  p ’ -  t +:( T- w - p  + r ) ) !  ( I +  p - t ++( T -  w - p  + r ) ) !  (28) 

where 

V(a, b, C )  

E ( u ,  b, C ) E  [ ( U  - b - c ) ! ( a  - b + c +  l ) ! ( a +  b - C +  l ) ! ( a +  b + ~ + 2 ) ! ] ’ / * .  

[ ( U  + b - c) !  ( U  - b + c) !  ( U  + b + C +  I ) ! / (  b + c - U ) ] ’ / *  



3414 S Szpikowski and W Berej 

In the above result we have used the eigenvalues of the quasi-spin operators in the 
‘internal state’ (16) as well as the matrix elements of the T, operators given by Aliiauskas 
and Jucys (1971). 

4. Unified description of the different constructions of the basis vectors 

The construction of the basis given in this paper as well as the constructions of Ahmed 
and Sharp (1970) and Smirnov and Tolstoy (1973) can be shown to rely on the same 
projection method with the differently defined ‘internal states’. The differences of the 
definition of ‘internal states’ in the three constructions are given in figure 1, where the 
‘initial states’ are the ‘corner states’ on the ( N o ,  T )  diagram. Although Ahmed and 
Sharp took the nine basis vectors of two fundamental representations of the group 
SO( 9, their vectors can be equivalently constructed starting with the highest weight state 

IHW) = I(wt)N = 2w + v ;  T = MT = t ) ,  (29) 

/ H W ) ’ = J ( o t ) N = 2 t + t 1 ;  T = M T = u )  (30) 

The construction of Smirnov and Tolstoy began with the state 

that is the state of a highest weight if for the first weight operator To is taken but not 
No. Let us repeat that our construction is based on the initial state ( 6 )  

lvt )  = I(wt)N = v ;  T = MT = t ) .  (6) 
The initial states (29), (30), (6) are so-called the ‘corner states’ on the diagram ( N o ,  T )  
for a given irreducible representation (u t ) ,  figure 1. The internal states of these three 
constructions are 

A (0) - N ~ ~ ~ -  I H W )  

A ( 1 ) q  - T ~ +  ( - 1 ) - 4 ~  (0) I H w)’ (31) 

A+( -l)pA’( l)p-p( ut )  

where q =+(U + t + T - No - a) and a, /3, y play the role of an additional quantum 
number in the three constructions to factorise the basis vectors. Let us add that in 
(29), (30) we have used different, but equivalent to original papers, forms of ‘initial 
states’. In each case after the projection procedure the overcomplete base is constructed 

Figure 1. The schematic diagram of the ‘corner states’ in the ( T, No)  plane for the irreducible 
representation ( w ,  1 )  of the group SO(5). The ‘corner states’ differ for three described state 
constructions and are denoted by jut ) ,  IHW) and IHW)’. 
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and the problem of choosing the independent states appears in each construction. Let 
us make the final remark that in our construction we gave a selection rule for the states 
with T >  r while in the Smirnov-Tolstoy construction the selection rule was applied 
to the states with T d t .  It also follows that our and the Smirnov-Tolstoy constructions 
can be considered as two complementary results of the basis problem in the group 
SO(5). If the multiplicity of the basis vectors with the same numbers N, T, MT is equal 
to one, the three constructions give, of course, the same vectors (up to a constant 
factor). Moreover, in many cases with the multiplicity larger than one, the Smirnov- 
Tolstoy construction also gives the same vectors as in our case. We have analysed that 
interesting convergence and have found its explanation. If we put the projection 
operator (14 ) ,  up to a constant factor, in the form 

then from ( 1 3 )  we get, after commuting ( T+)T'-K to the right, 

In a similar way we can express the vectors of the Smirnov-Tolstoy basis. At first, let 
us write the exact form of the highest weight state 

IHW)'= A+(O)*'A+( l )w-rlvt) .  (34 )  
If we, by using ( 3 1 ) ,  apply the annihilation operators A(0) and A ( l )  to (34 )  then, with 
the projection operator P L T T ,  we get the Smirnov-Tolstoy vectors 

The two transformed bases ( 3 3 )  and ( 3 5 )  look similar and there are special cases when 
the expansion coefficients in both constructions differ by a constant factor. In such a 
case the basis vectors are equivalent. 

5. Examples of applications 

We consider two problems which can be treated with the help of the constructed basis. 
The first problem is the problem of the fourth commuting operator in the quasi-spin 
physical basis. Such an operator has been constructed a long time ago (Flowers and 
Szpikowski 1965) in the form 

B ={A+(0)2-2A+(1)A'(-1)}{A(0)2-2A(1)A(-1)}.  (36) 
The operator B is an annihilation and creation operator of four nucleons coupled to 
the total J = 0 and T = 0. It commutes with the physical operators T2,  To and N. It 
was very soon recognised, unfortunately, that the operator B has non-rational eigen- 
values in the physical basis and, hence, it cannot be interpreted as a number operator 
of a-like nuclear clusters. However, the diagonalisation of the operator B means at 
the same time the orthogonalisation of the basis. The B diagonalisation can, however, 
be done only non-numerically using the matrix elements of the operator B in our basis. 
The results of the group algebraic calculation are the following: 

B I ( U t  1 NP TMT) 
= B P P I ( W W P T M T ) +  B p p + l l ( W t ) N *  P + 1 ,  TM,) 

+ B p . p - I I ( W t ) N ,  P - 1 ,  MJ) (37) 
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where B,,. are the matrix elements of the operator B given by the formulae 

Bp, = (2p + l ) (p-P)(w - t - p + p  +1)[2(w+ t - p ) + 3 3  

+ i ( T - K ) ( T - K  - l ) ( T + K + l ) ( T + K + 2 )  

B P , p + i  = -- ('-') (0  - t - p + p  + 1)J( T +  K ) (  T +  K - 1)( T -  K + 1)( T -  K +2)  
2(P + 1) 

BP,p-, = $ ( I  -2p)J(  T -  K ) (  T - K  - 1 ) (  T +  K + 1)(T+ K 1 2 ) .  (38) 

One should remember that for T > t ,  to the right-hand side of equation (37) can enter 
the vectors outside of the chosen basis (13), (17), (23). Such vectors should first be 
transformed to the basis vectors and then the matrix elements calculated. 

The diagonalisation of the operator B is, at the same time the orthogonalisation 
of the basis. Then the basis vectors are uniquely labelled by the quantum numbers T, 
MT, N and by the eigenvalues of the operator B. Although, generally speaking, the 
eigenvalues of the B operator are non-rational numbers, they have much in common 
with number of a clusters and with the four-particle correlations (Szpikowski and 
Trajdos 1984). 

The second problem in which we can exploit our basis construction is the problem 
of the pairing interaction with different strengths of the neutron-neutron, proton-proton 
and neutron-proton interactions. Hence, let us consider the problem of the diagonalisa- 
tion of the pairing Hamiltonian 

where, in general, the strength GMT depends on the pair isospin components MT. If 
G,, = G and it does not depend on M T ,  then (Flowers and Szpikowski 1964) the 
Hamiltonian (39) is expressed by the second-order Casimir operator C"', of the group 
SO(5) and by the commuting operators T2 and No, namely 

H = -G[ C") -i( T 2 -  Ni+3N0)]. (40) 

In such a case the pairing Hamiltonian is diagonal in the physical basis of the group 
SO(5) and the energy reads (Flowers and Szpikowski 1964) 

E = -aG[( N - v) (2 j+4- fN  - f v )  -2T( T +  1 )  +2t( t +  I)]. (41 1 
The energy in this case does not depend either on p or MT. In the general case (39) 
the Hamiltonian is deformed in the isospin space and hence, it depends as well on p 
as on MT.  

By the discussion of the general, pairing Hamiltonian (39) we wish to reach two 
goals. 

(i) In the model calculation we want to recognise how the pairing energy depends 
on the strength GMT. 

(ii) If we assume that GMT = G = constant then the complicated numerical results 
should give the very simple result (41). 

Such a comparison provides an indirect confirmation of the correct but rather 
complicated matrix element calculation and a confirmation of the properly constructed 
basis. 
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Let us consider one of the simple cases in which, however, the parameter p takes 
on at least two different values. In our example we consider N - 6  nucleons with 
seniority u = 2  and reduced isotopic spin t =  1 in the j = ;  level. The irreducible 
representation of the group SO(5) for that case is ( U ,  t )  = (3 , l ) .  The allowed p and T 
values for N = 6 and N = 4 are given in table 1 (the last case also enters the N = 6 
calculations). The underlined T values show the linearly independent states. Let us 
consider first the case of MT = 1. The matrix elements of (39) are calculated in the 
four-dimensional basis (table 1) 

111)=1(3, 1 ) N = 6 ;  p = 1 ;  T = l ;  MT=l)=l'iIA+(-l)A+(l)I2, 1) 

1 1 2 ) = ( ( 3 , l ) N = 6 ; p = 2 ;  T = l ;  MT=1)=Pi1A+(-1)2/2,1)  

1 2 ) = 1 ( 3 , l ) N = 6 ; p = l ;  T = 2 ;  Mj-=1)=P:IA+(-1)A't(l)12,1) 
(42) 

13)=/(3, 1 ) N = 6 ; P = 0 ;  T = 3 ;  MT=1)=P:,A+(1)212, 1) 

where 12, 1) = / U  = 2, t = 1). 
Let us consider, as an example of the calculation, the term 

A+t(l)A(1)111). 

At first we get 

3( - l )m+ '  
A ( l ) P ; ,  = 1 (11 1 - l ITO)(l l lm/T,  1 + m)P&+,A(-m). 

T,m 2 T + 1  

(43) 

(44) 

(45) 

The next part of the calculation gives 

A(l)A+(-l)A+(l)l2,  l )=2Af(-1) /2 ,  1) 

A(0)At(-1)A*(l)/2, 1)= -4 T-A+(1)/2,1) 

A(-l)A+(-l)A+(l)l2,  1)=4A+(1)12, 1). 

Hence, by (44), (45) we obtain 

A( 1)11,) = 2P&Af(-1)12, 1) + P,&A'(-1)12, 1) 

+d P&A+(l)l2, 1 )+~P~oA+( -1 )12 ,  1). (46) 
However, the last term on the right-hand side does not belong to the linearly indepen- 
dent basis (table l ) ,  because 

1 
P&Af(-1)12, l ) = -  Pi,A+(l)l2, 1). 45 (47) 

Table 1. The allowed values of P and T for the irreducible representation ( U ,  r )  = (3, 1) 
of the group SO(5). The underlined values of T a r e  those for the linearly independent states. 

N P 7 

6 0 3 
1 1 2 3  
2 1 2 3  

1 0 1 2  
4 0 2 
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Hence, we get 

16 
A(1)111)=2P~oA+(-1)12, 1)+ P,&A+(-1)12, l)+-p&A+(l)l2, 1). 

By the same method of calculation we finally get the result of (43) 

5& 

(49) 
16 

A+(l)A(l)Il1) =%111)+{112) -$2)+- 13). 5JlJ 
As a result we obtain the following matrix elements of the Hamiltonian (39) for MT = 1 

HI 1 = -1.7 GI - 2.1 Go - 3.2G-I H31 = -aGl +;G,-$G-, 

Hi2 = -0.5GI-k 0.5G-1 H32=0.5Gl -0.5Go 

HI3 = 0.1 GI + 3.1 Go- 3.2G-, 

HI4 = (-3.2G, +6.4G0- 3 . 2 G - , ) / f i  

H33 = -2.5Gl - ~ G o - $ G - l  

H34 = (2G1 - $ G o - i G - l ) / f i  
HZl=-0.2G,+ 1.4Go-1.2G-1 H41= (-2G1+4Go-2G-l)/fi 

H22 = - 5  GI - 2Go H42 = (6 GI - 4Go - 2 G- I ) /  JlJ 
H23 = 6.6G1- 5.4Go- 1.2G-1 H43 = 0 

16 H24=(-1.2G1+2.4Go-1.2G-1)/fi H44= - $ G l - ~ G o - & G - , .  

By similar calculations we also consider the case with MT = 0. The results are given 
in figure 2 where we plot the energy E in units Go against x = GI = G-, (also in Go 
units). The energies are relative to the energy of the ground state Eo = 0. 

Let us make the following comments. 
(i) For x = 1 we get GI = G-, = Go= G = constant and hence the formula (41) 

should be applied. From table 1 we get three different values of an isospin T = 1; 2; 
3, and for these levels we get from (41) E(  T = 1) = -7; E(  T = 2) = -5; E (  T = 3) = -2 
or relatively to the ground state E = 0; 2 and 5 exactly as from numerical calculations 
(figure 1 for x = 1). 

E '  
I O  - 

8 -  

6 -  

4 -  

2 -  

0 -  
L 

0 0.5 1.0 1.5 2.0 x 

Figure 2. The energy E (in Go units) against the strength x = G , / G o  = G - , / G o  ( G ,  = G - , )  
of the pairing Hamiltonian (39) and for the irreducible representation ( w ,  1 )  = (3 ,  1) of the 
group SO( 5 )  with j = i; N = 6 ;  U = 2. The excited energies ( E ,  E , € , )  are taken respectively 
to the ground state energy E ,  = 0. For x = 1 there is a charge-independent Hamiltonian 
(40) and two T = 1 levels are degenerated ( E o  = E , ) .  



A new physical SO(5) basis 3419 

(ii) The maximum spreading of energy levels is lower if x goes from 0 to 0.5. At 
first sight it looks strange because for the larger strength x, AE should be larger. 
However, detailed calculations show that the spreading depends both on diagonal and 
non-diagonal matrix elements of (39). Diagonal matrix elements are in fact proportional 
to the strength x; however non-diagonal matrix elements go to zero for x + 1. Hence, 
opposing contributions enter the detailed calculations with the results of figure 2. 

(iii) The first excited state is extremely low for x > 1 with MT = 1. The low excited 
energy for that case can be explained by the large deformation in the quasi-spin and 
isospin abstract space with the axial symmetry ( M ,  = 1). That is not true for x < 1 or 
for M ,  = 0. 

(iv) For x f 1, two levels with T = 1 split in energy and, moreover, the eigenstates 
are not the states of a fixed T ;  there is not, in that case, the charge-independent 
Hamiltonian. 

6. Concluding remarks 

We have constructed a new analytical but non-orthogonal basis for the irreducible 
representations of the group SO(5). The basis is of a physical nature, i.e. the commuting 
operators which provide the quantum numbers to factorise states are isospin operators 
T’ and To, the nucleon number operator N and the fourth p number properly defined 
to get the complete but not overcomplete basis. The fourth operator B can be also 
used to permit numerical orthogonalisation of the basis. The matrix elements of the 
four-particle B operator are the ingredients for the orthogonalisation procedure. 

We have also discussed the known constructions of the I R  basis and we have 
compared those constructions with the basis constructed in this paper. We have shown 
that all three constructions could be treated within the same projection procedure 
applied, however, to different initial and ‘corner’ states. 

Finally, we have applied the constructed basis to analyse the pairing charge- 
dependent Hamiltonian for a system of neutrons and protons. Several interesting 
conclusions (section 5 )  follow from the detailed calculations based on the matrix 
elements of the Hamiltonian and on its numerical diagonalisation in the constructed 
new basis. 
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